
1

COMP 314 Homework Assignment A

� Exercise 1.1 (15 points)

� Exercise 1.2 (15 points)

� Exercise 2.1 (Ungraded) Some additional specific suggestions for this
exercise are as follows. I like the Python Programming wikibook,
available at http://en.wikibooks.org/wiki/Python_Programming.
Or, choose one of the other tutorials from the list at https://wiki.
python.org/moin/BeginnersGuide/Programmers.

� (Ungraded) Work through all the practical exercises suggested in Sec-
tions 2.1–2.4. In particular, this includes:

– Change the outputs of containsGAGA.py to be yep and nope.
Test it, then return containsGAGA.py to its original form.

– Run containsGAGA.py using the contents of geneticString.txt
as input.

– Create a new Python program, temp.py, that executes con-
tainsGAGA on several different inputs, including the contents
of geneticString.txt, and prints the results of each.

– Run countLines.py and longestWord.py on the contents
of wasteland.txt.

– Run each of the five programs in Figure 2.5, and verify that the
expected error or misbehavior is observed.

� Exercise 2.2

(a) (15 points)

(b) (5 points)

(c) (10 points)

� Exercise 2.3 (10 points)

� Exercise 2.4 (12 points)

� Exercise 2.5 (18 points)

� Exercise 2.6 (6 points)

Total points on this assignment: 106

http://en.wikibooks.org/wiki/Python_Programming
https://wiki.python.org/moin/BeginnersGuide/Programmers
https://wiki.python.org/moin/BeginnersGuide/Programmers

	Preface for instructors
	Which ``theory'' course are we talking about?
	The features that might make this book appealing
	What's in and what's out
	Possible courses based on this book
	Computer science as a liberal art
	Part 0: Overview
	Introduction: what can and cannot be computed?
	Tractable problems
	Intractable problems
	Uncomputable problems
	A more detailed overview of the book
	Prerequisites for understanding this book
	The goals of the book
	Why study the theory of computation?
	Exercises

	Part I: Computability theory
	What is a computer program?
	Some Python program basics
	SISO Python programs
	Programs that call other functions and programs

	ASCII characters and multiline strings
	Some problematic programs
	Formal definition of Python program
	Decision programs
	Equivalent programs

	Real-world programs vs SISO Python programs
	Exercises

	Some impossible Python programs
	Proof by contradiction
	Programs that analyze other programs
	Programs that analyze themselves

	The program yesOnString.py
	The program yesOnSelf.py
	The program notYesOnSelf.py
	yesOnString.py can't exist, either
	A compact proof that yesOnString.py can't exist

	Perfect bug-finding programs are impossible
	We can still find bugs, but we can't do it perfectly
	Exercises

	What is a computational problem?
	Graphs, alphabets, strings, and languages
	Graphs
	Trees and rooted trees
	Alphabets
	Strings
	Languages

	Defining computational problems
	Positive and negative instances
	Notation for computational problems

	Categories of computational problems
	Converting between general and decision problems
	Complement of a decision problem
	Computational problems with two input strings

	The formal definition of ``solving'' a problem
	Computable functions

	Recognizing and deciding languages
	Recognizable languages
	Exercises

	Turing machines: the simplest computers
	Definition of Turing machine
	Halting and looping
	Accepters and transducers
	Abbreviated notation for state diagrams
	Creating your own Turing machines

	Some nontrivial Turing machines
	The moreCsThanGs machine
	The countCs machine
	Important lessons from the countCs example

	From single-tape Turing machines to multi-tape Turing machines
	Two-tape, single-head Turing machines
	Two-way infinite tapes
	Multi-tape, single-head Turing machines
	Two-tape, two-head Turing machines

	From multi-tape Turing machines to Python programs and beyond
	Multi-tape Turing machine random-access Turing machine
	Random-access Turing machine real computer
	Modern computer Python program

	Going back the other way: simulating a Turing machine with Python
	A serious caveat: memory limitations and other technicalities

	Classical computers can simulate quantum computers
	All known computers are Turing-equivalent
	Exercises

	Universal computer programs: programs that can do anything
	Universal Python programs
	Universal Turing machines
	Universal computation in the real world
	Programs that alter other programs
	Ignoring the input and performing a fixed calculation instead

	Problems that are undecidable but recognizable
	Exercises

	Reductions: how to prove a problem is hard
	A math-style reduction
	A CS-style reduction
	Formal definition of Turing reduction
	Properties of Turing reductions
	An abundance of uncomputable problems
	The variants of YesOnString
	The halting problem and its variants
	Uncomputable problems that aren't decision problems

	Even more uncomputable problems
	The computational problem ComputesF
	Rice's theorem

	Uncomputable problems that aren't about programs
	Not every question about programs is uncomputable
	Proof techniques for uncomputability
	Technique 1: the reduction recipe
	Technique 2: reduction with explicit Python programs
	Technique 3: apply Rice's theorem
	Exercises

	Nondeterminism: magic or reality?
	Nondeterministic Python programs
	Nondeterministic programs for non-decision problems
	Computation trees
	Nondeterminism doesn't change what is computable
	Nondeterministic Turing machines
	Formal definition of nondeterministic Turing machines
	Models of nondeterminism
	Unrecognizable problems
	Why study nondeterminism?
	Exercises

	Finite automata: computing with limited resources
	Deterministic finite automata
	Nondeterministic finite automata
	State diagrams for nfas
	Formal definition of an nfa
	How does an nfa accept a string?
	Sometimes nfas make things easier

	Equivalence of nfas and dfas
	Nondeterminism can affect computability: the example of pdas
	Practicality of converted nfas
	Minimizing the size of dfas

	Regular expressions
	Pure regular expressions
	Standard regular expressions
	Converting between regexes and finite automata

	Some languages aren't regular
	The non-regular language GnTn
	The key difference between Turing machines and finite automata

	Many more non-regular languages
	The pumping lemma

	Combining regular languages
	Exercises

	Part II: Computational complexity theory
	Complexity theory: when efficiency does matter
	Complexity theory uses asymptotic running times
	Big-O notation
	Dominant terms of functions
	A practical definition of big-O notation
	Superpolynomial and subexponential
	Other asymptotic notation
	Composition of polynomials is polynomial
	Counting things with big-O

	The running time of a program
	Running time of a Turing machine
	Running time of a Python program
	The lack of rigor in Python running times

	Fundamentals of determining time complexity
	A crucial distinction: the length of the input vs the numerical value of the input
	The complexity of arithmetic operations
	The complexity of factoring
	The complexity of sorting

	For complexity, the computational model does matter
	Simulation costs for common computational models
	Our standard computational model: Python programs

	Complexity classes
	Exercises

	Poly and Expo: the two most fundamental complexity classes
	Definitions of Poly and Expo
	Poly and Expo compared to P, Exp and FP

	Poly is a subset of Expo
	A first look at the boundary between Poly and Expo
	All3Sets and AllSubsets
	Traveling salespeople and shortest paths
	Multiplying and factoring
	Back to the boundary between Poly and Expo
	Primality testing is in Poly

	Poly and Expo don't care about the computational model
	HaltEx: A decision problem in Expo but not Poly
	Other problems that are outside Poly
	Unreasonable encodings of the input affect complexity
	Why study Poly, really?
	Exercises

	PolyCheck and NPoly: hard problems that are easy to verify
	Verifiers
	Polytime verifiers
	The complexity class PolyCheck
	Some PolyCheck examples: Packing, SubsetSum, and Partition

	The complexity class NPoly
	PolyCheck and NPoly are identical
	Every PolyCheck problem is in NPoly
	Every NPoly problem is in PolyCheck

	The PolyCheck/NPoly sandwich
	Nondeterminism does seem to change what is computable efficiently
	The fine print about NPoly
	An alternative definition of NPoly
	NPoly compared to NP and FNP
	Exercises

	Polynomial-time mapping reductions: proving X is as easy as Y
	Definition of polytime mapping reductions
	Polyreducing to non-decision problems

	The meaning of polynomial time mapping reductions
	Proof techniques for polyreductions
	Examples of polyreductions using Hamilton cycles
	A polyreduction from Uhc to Dhc
	A polyreduction from Dhc to Uhc

	Three satisfiability problems: CircuitSAT, SAT, and 3-SAT
	CircuitSat
	Sat
	3-Sat

	Polyreductions between CircuitSAT, SAT, and 3-SAT
	Polyequivalence and its consequences
	Exercises

	NP-completeness: most hard problems are equally hard
	P versus NP
	NP-completeness
	Reformulations of P versus NP using NP-completeness

	NP-hardness
	Consequences of P=NP
	CircuitSat is a ``hardest'' NP problem
	NP-completeness is widespread
	Proof techniques for NP-completeness
	The good news and bad news about NP-completeness
	Problems in NPoly but probably not NP-hard
	Some problems that are in P
	Some NP-hard problems can be approximated efficiently
	Some NP-hard problems can be solved efficiently for real-world inputs
	Some NP-hard problems can be solved in pseudo-polynomial time
	Exercises

	Part III: Origins and applications
	The original Turing machine
	Turing's definition of a ``computing machine''
	Machines can compute what humans can compute
	The Church-Turing thesis: a law of nature?
	The equivalence of digital computers
	Church's thesis: the equivalence of computer programs and algorithms
	Turing's thesis: the equivalence of computer programs and human brains
	Church-Turing thesis: the equivalence of all computational processes
	Exercises

	You can't prove everything that's true
	Mechanical proofs
	Semantics and truth
	Consistency and completeness
	Decidability of logical systems

	Arithmetic as a logical system
	Converting the halting problem to a statement about integers
	Recognizing provable statements about integers
	The consistency of Peano arithmetic

	The undecidability of mathematics
	The incompleteness of mathematics
	What have we learned and why did we learn it?
	Exercises

	Karp's 21 problems
	Karp's overview
	Karp's definition of NP-completeness
	The list of 21 NP-complete problems
	Reductions between the 21 NP-complete problems
	Polyreducing Sat to Clique
	Polyreducing Clique to Node Cover
	Polyreducing Dhc to Uhc
	Polyreducing Sat to 3-Sat
	Polyreducing Knapsack to Partition

	The rest of the paper: NP-hardness and more
	Exercises

	Conclusion: what will be computed?
	The big ideas about what can be computed

